On the Number of Orthogonal Systems in Vector Spaces over Finite Fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of Orthogonal Systems in Vector Spaces over Finite Fields

Iosevich and Senger (2008) showed that if a subset of the d-dimensional vector space over a finite field is large enough, then it contains many k-tuples of mutually orthogonal vectors. In this note, we provide a graph theoretic proof of this result.

متن کامل

Orthogonal Systems in Vector Spaces over Finite Fields

We prove that if a subset of the d-dimensional vector space over a finite field is large enough, then it contains many k-tuples of mutually orthogonal vectors.

متن کامل

Orthogonal Systems in Vector Spaces over Finite Rings

We prove that if a subset of the d-dimensional vector space over the ring of integers modulo pr is large enough, then the number of k-tuples of mutually orthogonal vectors in this set is close to its expected value.

متن کامل

Notes on quantization of symplectic vector spaces over finite fields

In these notes we construct a quantization functor, associating an Hilbert space H(V ) to a finite dimensional symplectic vector space V over a finite field Fq. As a result, we obtain a canonical model for the Weil representation of the symplectic group Sp (V ). The main technical result is a proof of a stronger form of the Stone-von Neumann theorem for the Heisenberg group over Fq. Our result ...

متن کامل

Classical wavelet systems over finite fields

This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2008

ISSN: 1077-8926

DOI: 10.37236/907